


FOS System Architecture Andy Miller

16 October 1995

FOS CDR Roadmap

FOS CDR Overview

- FOS CDR goals
- Driving requirements

Engineering Activities

- Activities since PDR
- FOS team approach

IST

- Capabilities
- Plans

Hardware Design

- Computers
- Peripherals

Network Design

- EOC LAN
- IST Connectivity

FOS Infrastructure

- Mgt Services
- Comm Services

Segment Scenarios

- End-to-End Flow
- Subsystem Interfaces
- Building block linkage

Subsystem Design

- Detailed design
- FOS functions/tools
- Subsystem design features

RMA

- RMA allocation
- FMEA/CIL

Operations Overview

- EOC facilities
- FOT positions

Operational Scenarios

- End-to-end flow
- Operations perspective
- FOT tool usage

Development

- Release Plan
- Development approach

Testing

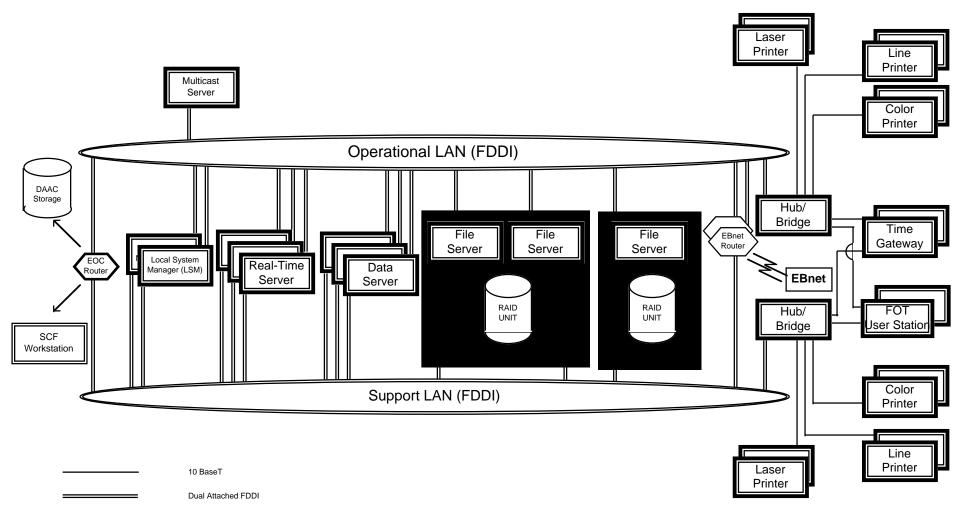
- Test approach
- Test organization

FOS System Architecture

Physical

- Network
- Computers

FOS Infrastructure


- Mgt Services
- Comm Services

Software

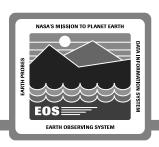
- Scheduling
- Real-Time
- Analysis

EOC Block Diagram

706-CD-002-001 Day 1

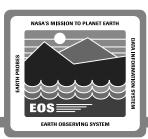
AM2-4

FOS Physical Architecture


EOC Network

- Dual FDDI rings
 - Operational LAN
 - Support LAN
- Ethernet segments
 - User Stations connected to EOC LAN via Ethernet segments

Computers


- Real-Time Server
 - Performs real-time processing of telemetry and command in support of a spacecraft contact
- Data Server
 - Services requests for scheduling data, historical data, and database information

FOS Physical Architecture

- User Stations
 - Provides user capability to access all FOS services
- Local System Manager
 - Hosts CSMS Management and Communication Services
- Multicast Replicator Server
 - Provides localized function for routing multicast data to ISTs via point-to-point interface
- Data Storage Unit
 - Provides fault tolerant access to FOS operational data

FOS System Architecture

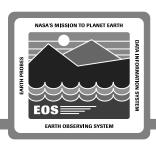
Data Storage Unit Real-Time Server Data Server Scheduling - Plans, schedules - Orbit Data Real-Time Contact Data Management - Loads - Establish Logical string -Back Orbit Ingest & Archive - Ground Scripts -Modes -Telemetry Merge Real-Time - Real-Time -Archive Events - Telemetry - Simulation -PDB Management - Command Loads - Replay Analysis - Telemetry - Statistics - Comprehensive TLM Monitor Scheduling - Telemetry - Archive - Resource Model - Ground telemetry -Command Data Management Validation Analysis - Telemetry DB -Statistics Generation - Build - Command DB -Standing Orders - Transmission - Activities DB - Verification - Constraints DB

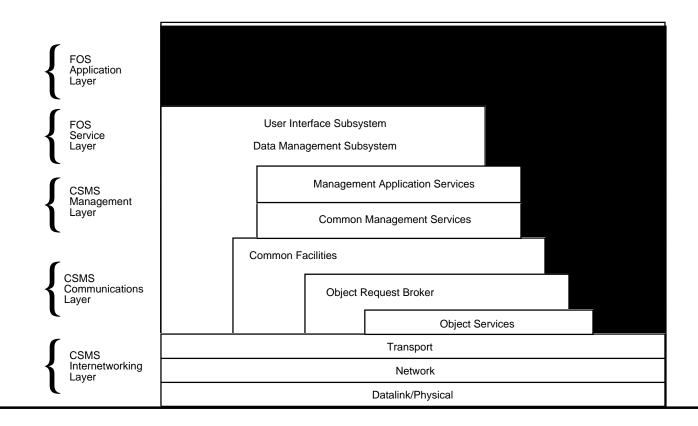
FOT User Station Off-Line Scheduling - Scheduler - Algorithms - Visualization - Trending, Fault detection - Resource Model Replay - Analysis Request Manager Real-Time Data - Monitor real-time contacts - Telemetry - Modes - Spacecraft - Simulation - Ground - Real-Time - Statistics - Displays, plts, graphs Products - Command - Execute ground scripts - Reports - Plots - Send real-time commands - Carry-out

PI/TL Workstation (IST Toolkit)

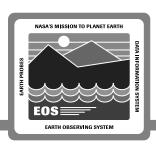
Scheduling

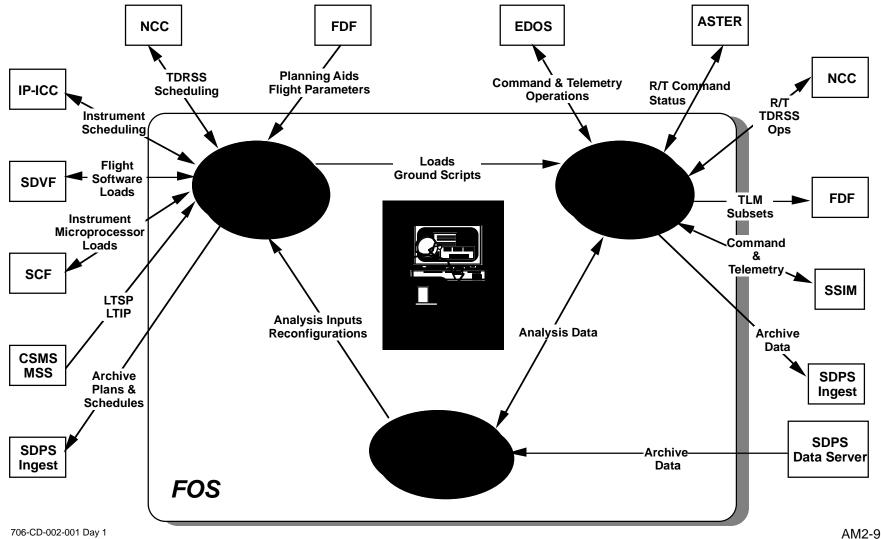
- -Scheduler
- -Visualization
- Resource Model

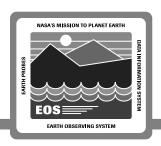

Real-Time


-Monitor Real-Time Contacts -Send Command Requests

Off-Line


- Same as FOT W/S (Analysis Phase)


FOS Software Architecture



FOS Software Context Diagram

Key FOS Threads

Scheduling

- Ingest and distribution of planning aids
- Establishment of TDRSS contact times
- Final scheduling
- Command load generation and ground script generation

Real-Time

- NCC and EOC configuration requests
- Command uplink and verification
- Telemetry processing and monitoring
- Real-Time analysis

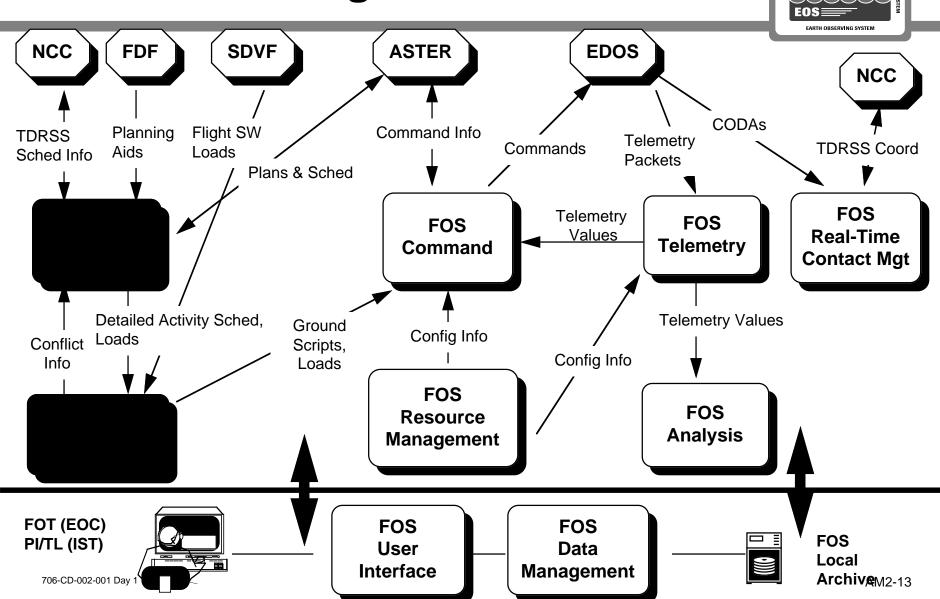
Off-Line

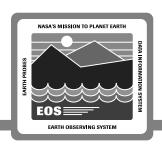
- Anomaly detection
- Performance assessment
- Load management

FOS Software Functionality

Function to Software Subsystem Mapping

Activity Phase	Software Subsystem
Scheduling	Planning & Scheduling Command Management
Real-time	Resource Management Real-time Contact Management Telemetry Command Analysis
Off-Line	Analysis Command Management


Support User Interface Data Management


page intentionally left blank.

706-CD-002-001 Day 1 AM2-12

Scheduling Architecture

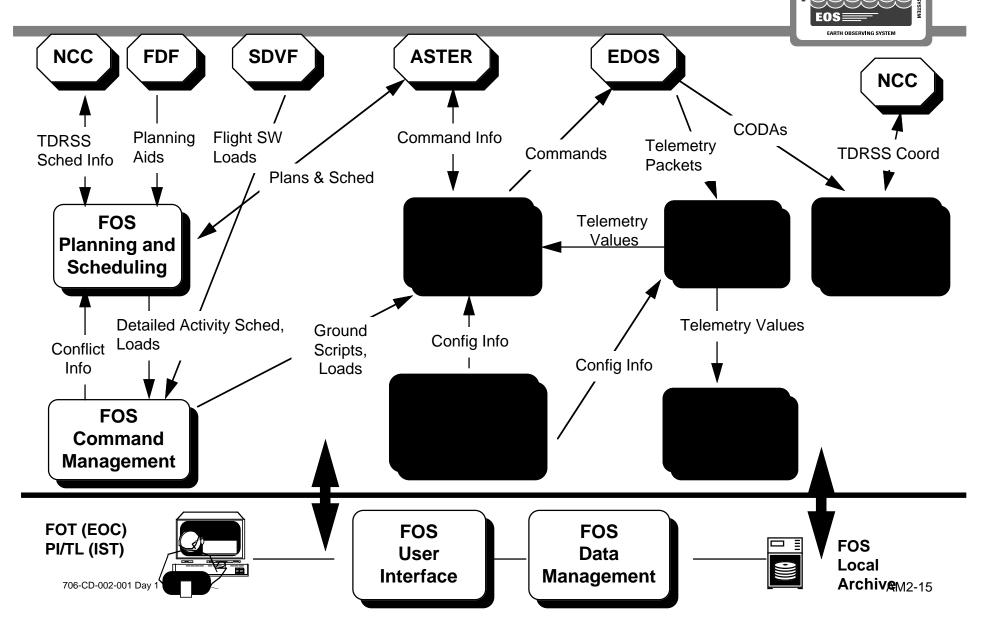
Scheduling Architecture

Ingest and Distribution of Planning Aids

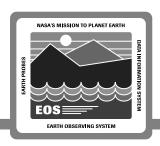
- Receive planning aids from FDF
- Distribute to instrument teams via IST

Establishment of TDRSS Contact Times

- TDRSS contact request submitted to NCC
- NCC sends contact schedule with any rejection info


Final Scheduling

- Scheduling of ground activities
- Generates integrated conflict free detailed activity schedule


Command Load Generation

Generation of ground scripts and ATC loads

Real-Time Architecture

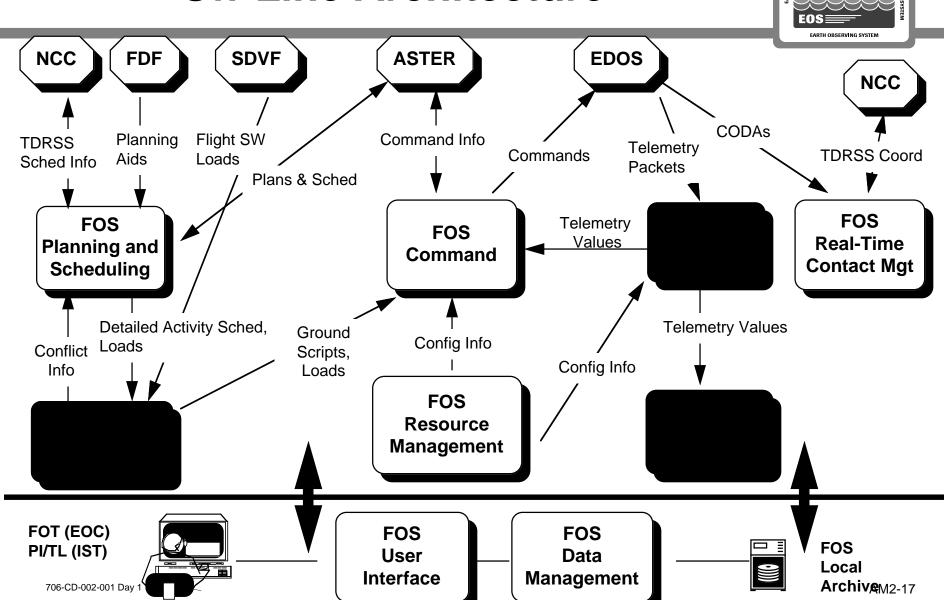
Real-Time Architecture

EOC and NCC Configuration Requests

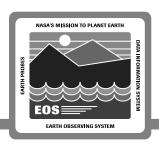
- EOC processes user requests to establish logical string for a real-time contact
- NCC receives requests for space network configuration change from the EOC, if required

Command Uplink and Verification

- Validate, build, and transmit commands to S/C via EDOS
- Verify commands and command loads from CLCWs and housekeeping telemetry


Telemetry Monitoring

- Receive and process housekeeping telemetry from S/C via EDOS
- Display telemetry data and identify limit violations


Real-time Analysis

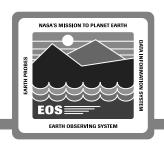
SSR Management and Clock Correlation

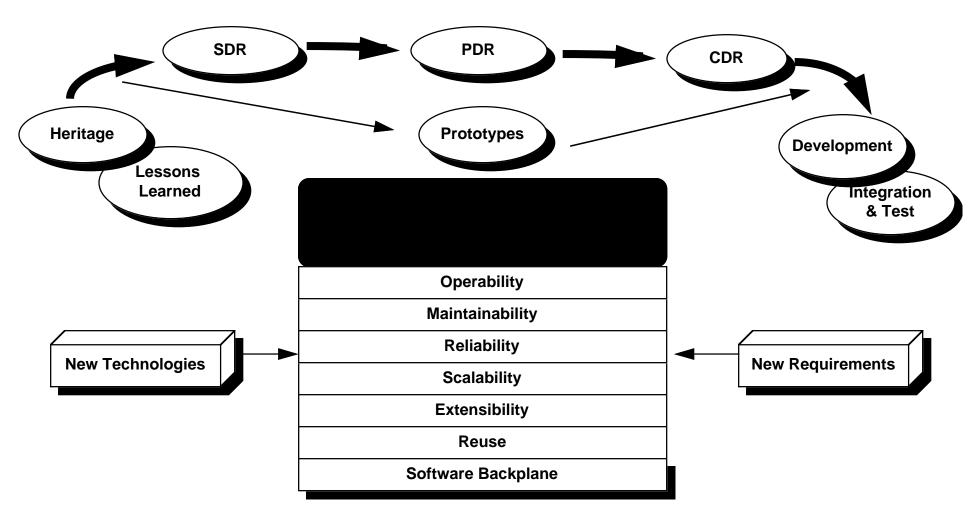
Off-Line Architecture

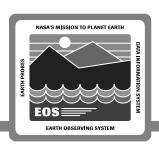
Off-Line Architecture

Routine Operations

- Analyze real-time and historical telemetry
- Assess spacecraft subsystem and instrument performance via plots, reports, statistical analysis, and trend analysis

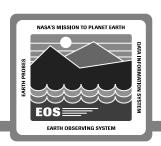

Anomaly Investigations


- Identification of resource degradation through routine operations analysis
- Use analysis tools to assist in determining scope of the problem and determine corrective action
- If time critical, then corrective action implemented during next available contact
- If not time critical, then corrective action implemented into scheduling operations


Load Management

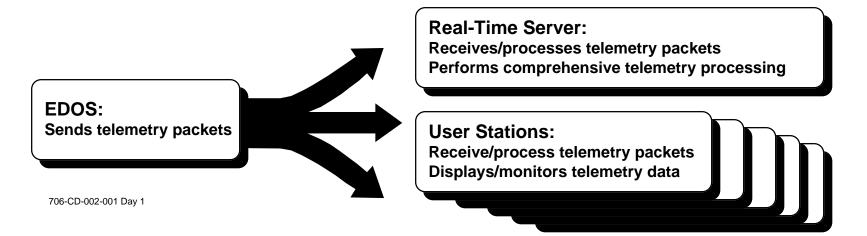
Production of formatted load dumps and dump comparisons

FOS Architectural Goals



1) Develop Building Blocks

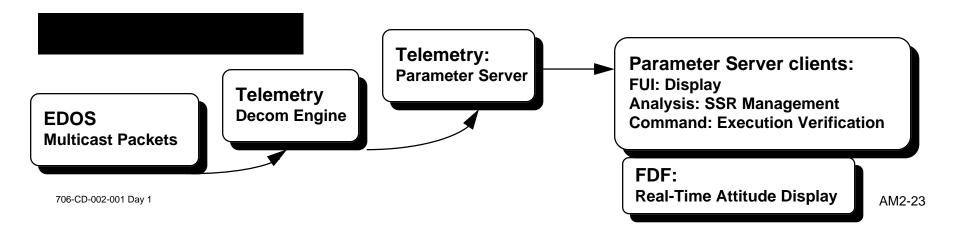
- Design to reuse control center building blocks for future missions
- Design enables optimal support for technology insertion and new mission requirements
- Utilize object oriented methodology to maximize building block development
- Examples:
 - Planning and Scheduling: Resource Model
 - Resource Management: String Manager
 - Telemetry: Decom Engine
 - Telemetry: Parameter Server
 - Data Management: Queue Manager


- 2) Develop an End-to-end Eystem Eolution
 - Link building blocks together to form loosely coupled, highly cohesive system
 - Links in system provided through data products
- Planning and Scheduling:
 Resource Model
 Timeline

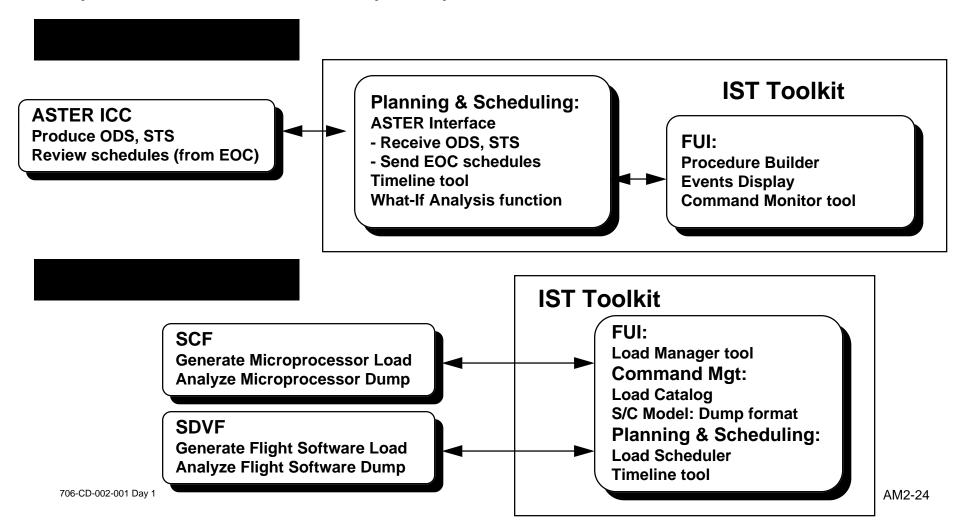
 Command Management:
 Ground Script Generation
 ATC Load Generation
 Ground Script Controller
 Command Validation and Build
 Command Uplink and Verification

3) Scalable Architecture

- Definition
 - Ability to increase/decrease the system size based on mission requirements
 - e.g., number of computers, users, tools
- Example: Multicasting
 - Reduces server load and network bandwidth utilization
 - New hosts are added to the system without increasing server load
 - Sending node sends only one message

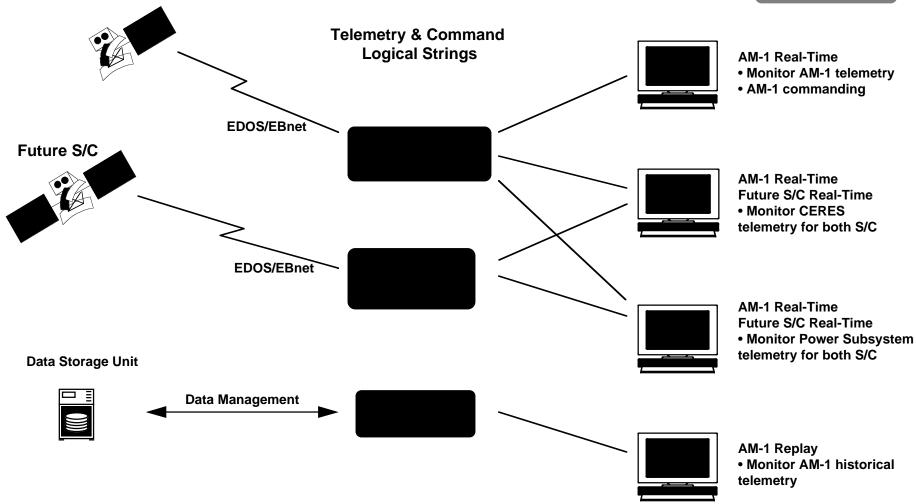


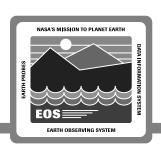
4) Extensible Architecture


- Definition
 - Add new functionality to the system
 - Adapt existing system to new or changing requirements
- Example:
 - IST design provided the solution to the FOS interface for 3 different interfaces

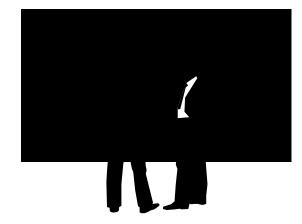
FDF, SDVF, and ASTER

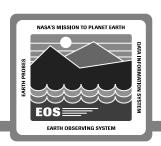
4) Extensible Architecture (cont.,)

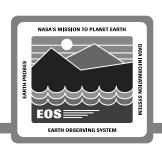



4) Operational Flexibility

- Facilitate operational efficiency and flexibility in assigning staff personnel and tasks
- Enable FOT/IOT to run all FOS application from any workstation
- Example: Logical Strings
 - Use of Logical Strings enables the FOS to support additional processing configurations independent of hardware
 - Logical String is a collection of FOS processing resources that support a specific function (real-time contact, simulation, replay)
 - Logical Strings enable an operator to monitor data from multiple sources on the same display


Logical String





- 6) Provide Global Visibility to the Users
 - Examples
 - IST: remote 'window into the EOC' for PI/TL, IOT
 - Planning and Scheduling: Timeline
 - Resource Management: Logical String configurations
 - User Interface: Command Control window
 - Data Management: Analysis request queue
 - Analysis: Analysis Farm resources

- 7) Maximize Distribution of Processing
 - Example: Planning and Scheduling
 - Scheduling distributed to the User Stations and ISTs
 - IOTs can schedule activities for their instruments
 - Global visibility provide via the Timeline tool
 - Examples:
 - Analysis: Analysis Farm
 - Telemetry: Decom distribution to workstations

- 8) Provide User Customization Capabilities (operational)
 - Examples:
 - User defined display pages and rooms
 - Procedure Builder tool
 - Selective decommutation and tailored telemetry processing
 - Standing Orders
 - Carry-Out products
 - Custom Report builder

- 9) Provide a System With High RMA
 - Ensure no single point-of-failure
 - Provide redundant hardware components

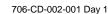
 Multiple servers

 RAID
 - Provide redundant software components
 Primary and Backup logical strings on different Real-Time Servers

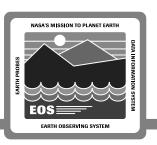
Software monitoring of critical real-time software

- Promote failure recovery through software switches
 - 1 minute restoration of real-time processing

- 10) Provide an Evolvable Architecture that is Conducive to Increased Automation
 - Increase operational efficiencies
 - Triggers based on operational events (e.g., after receipt of backorbit telemetry)
 - Standing Orders facilitate data reduction for the FOT/IOT
 - Provide automation framework
 - Example:


Ground script

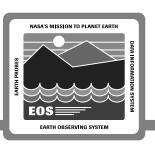
Command requests based on SSR Management models


Decision Support System

Failure recovery through logical strings (primary and backup)

Remote monitoring via IST

System Architecture Summary


Define an Evolvable Architecture that Facilitates Reduced Life Cycle Costs

- Single FOS can support multiple missions concurrently
 - Economies of scale for FOT staffing
 - Future missions can use existing hardware

 Logical strings used instead of physical strings

 Reduces hardware maintenance costs
- Designed for reuse
 - Building blocks encapsulate functionality
 - New capabilities inherited from existing design
 - New software focused on mission customization requirements
- Database-driven system
 - Facilitates ability to add, modify, and adapt functions

System Architecture Summary

- Platform Independence
 - Flexibility in selecting hardware based on cost/performance trades
- Improve operational efficiencies
 - Provide automation framework to facilitate increased automation in the future
 - Streamline operational tasks